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Abstract 

 My thesis project is a means of understanding the conditions associated with 

success and failure in the American film industry. This is carried out by tracking the 

careers of several thousand actors and actresses, and the number of votes that their 

movies have received on IMDb. A fundamental characteristic of film career success is 

that of influence from prior success or failure—consider that an established “star” will 

almost certainly receive opportunities denied to an unknown actor, or that a successful 

actor with a string of poorly received films may stop receiving offers for desirable roles. 

The goal for this project is to to develop an understanding of how these past events are 

linked with future success.  

 The results of this project show a significant difference in career development 

between actors and actresses—actors’ career trajectories are significantly influenced by a 

small number of “make or break” films, while actresses’ careers are based on overall 

lifetime performance, particularly in an ability to avoid poorly-received films. Indeed, 

negatively received films are shown to have a distinctly greater influence on actresses’ 

careers than those that were positively received. 

 These results were obtained from a model using machine learning to find which 

movies from actors’ and actresses’ pasts tend to have the most predictive information. 

The parameters for which movies should be included in this set was optimized using a 

genetic learning algorithm, considering factors such as: film age, whether it was well-



received or poorly-received, and if so, to what magnitude, and whether the film fits with 

the natural periodicity that many actors’ and actresses’ careers exhibit. Results were 

obtained following an extensive optimization, consisting of approximately 5000 

evolutionary steps and 200,000 fitness evaluations, done over 125 hours.   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Chapter 1  

Introduction 

 Success in the American film industry is that of of legends and lore. Underlying 

the romance is a profoundly rational industry: actors build careers on an ability to bring 

patrons into the theater and generate revenue, producers hire cast members based in part 

on past performance, and moviegoers choose films to see based on heuristic information 

such as plot synopsis, media buzz, whether the movie is a sequel/adaptation from an 

earlier work with which they are familiar, and knowledge of the cast. The success or 

failure of a movie is therefore linked to the audience’s expectation that its cast will 

deliver a good performance or choose a good project—an expectation that is necessarily 

derived from knowledge of those actors’ past performances and choices. By this process, 

actors’ career trajectories are heavily influenced by their history of success or failure. The 

focus of my thesis project is to develop an understanding of this mechanism of success: 

by using artificial intelligence to learn how to identify the prior career movies that will 

best predict future success, we can learn how careers and built and destroyed.    

 The work for this project builds upon research done by myself and others at 

Professor Albert-László Barabási’s research group, the Center for Complex Network 

Research at Northeastern University.  

!1



Section 1.1 

Prior Work 

 A good deal of prior work exists, which has attempted to identify leading 

indicators of film popularity. These indicators are generally based on factors that are 

measurable either shortly before the release of a given movie, such as pre-release buzz 

measured by number of tweets published about the film, or shortly after release, such as 

day-to-day box office receipts. Notably, the prior art does not consider popularity of 

earlier career work—the central approach of this thesis.  

Section 1.1.1: Film Research 

 Despite the somewhat different approaches taken by the existing research, their 

results are relevant to this work. One such study is Mestyán, Yesseri, Kertész (2013), 

which uses the activity level of the editors and viewers of the film’s Wikipedia entry, 

prior to the film’s release, to predict its eventual revenue. The authors used a multivariate 

regression, between the number of page views, the number of users, the number of edits, 

and the collaborative rigor of the editors – and the eventual financial success of each 

movie. They found a strong coefficient of determination for these variables, leading to the 

conclusion that these factors can indeed be seen as predictive of the financial success of 

the movie. This is relevant, because a good deal of the buzz for a movie before its release 

is based on the cast and crew—this suggests a basis for explaining why prior work of the 
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cast and crew can be predictive for their future success: if people are familiar with actors’ 

past work, this will influence attendance of their future films.  

 The idea that the cast of a film is notably linked to its box office success is 

supported by Sharda and Delen (2006). In this paper, the authors used a neural network 

algorithm to predict the financial success of 834 movies, released from 1998 to 2002. The 

authors used numerous categories of data, including genre, rating, presence of stars, and 

use of special effects; when their machine learning algorithm was trained they were able 

to learn which categories were most predictive. Other than number of screens—which is 

ambiguous as to whether it can be considered a cause of success or simply an effect—the 

two most significant factors for success were high-end special effects, and presence of “A 

list” actors and actresses. In this way this study supports the idea that film cast has a 

strong impact on success or failure. 

 The importance of film cast is further supported by Levin, Levin and Heath 

(1997). In this study researchers investigated whether moviegoers would consider the 

presence of a prominent star in their decision as to whether to see a given film. To that 

end they conducted a survey with 62 undergraduate students. Participants were divided 

into groups, such that each group received synopses of a set of films. Some participants 

were given critics’ reviews (positive or negative); some participants were informed of 

fictitious stars being in the film, as a control, while others were told that real-world stars 

were in the film. The results showed that in the presence of positive reviews, stars had a 
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minimal impact on success, as most people were likely to see the movie anyway; in the 

absence of reviews or when the reviews were negative, however, star presence was seen 

to significantly increase the likelihood of test subjects seeing the movie. 

 A key aspect of this thesis is that of the relative impact of positive and negative 

impressions. A relevant study was conducted by Hennig-Thurau (2014). Researchers used 

a support vector machine to perform sentiment analysis on tweets about movies, and used 

the sentiments to predict eventual revenue. However, the researchers separately 

considered the effects of positive and negative tweets, under the hypothesis that negative 

buzz may have more impact than positive buzz. Their results confirmed this: they found 

that although positive tweets had little correlation with eventual revenue, negative tweets 

were strongly associated with decreased revenue. In this way negative word of mouth can 

have a more profound impact than positive word of mouth—this will inform some of the 

analysis in this thesis. The researchers then conducted a poll of film viewers, which found 

that there was indeed a causation, not just correlation—people would deliberately avoid 

movies with negative buzz. 

Section 1.1.2: Beyond Films 

 The idea that negative impressions have more influence than positive ones is 

strongly supported by Baumeister (2001), in a review paper, published in the Review of 

General Psychology, entitled “Bad is Stronger than Good”. The researchers surveyed a 
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wide range of papers in the field of psychology; among their conclusions were that “bad 

impressions and bad stereotypes are quicker to form and more resistant to 

disconfirmation than good ones,” and that “hardly any exceptions (indicating greater 

power of good) can be found.” This supports the conclusion, in Hennig-Thurau (2014), 

that bad word of mouth has significantly more impact on moviegoing decisions than good 

word of mouth. 

 Relevant research in prediction extends beyond that of predicting movie 

popularity. In Gruhl, et al., a 2005 paper analyzing the then-nascent blogosphere, 

researchers attempted to correlate blog mentions of books with each book’s sales rank on 

Amazon.com. Their results held that there tended to be very strong correlations, and that 

volume of blog mentions could be predictive of future sales rank over a window of 

several days. Furthermore, the researchers proposed that sales rank may be a Markov 

process, and suggested using a fixed-length window of sales history to predict the 

following day’s sales. As one question to be investigated in this project is whether film 

career success is also a Markov process, this is a relevant consideration.  

 Moving beyond popular media, we also have relevant research in the medical 

field. In Shipp, et al., researchers at Harvard Medical School and the MIT Center for 

Genome Research attempted to use machine learning to predict the outcome of diffuse 

large B-cell lymphoma cases. This form of lymphoma is the most common lymphoid 

malignancy in adults, and could be cured in less than 50% of patients at the time of 
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writing in 2002. Using machine learning through a hierarchical clustering algorithm, 

researchers were able to effectively delineate patients based on survival probabilities, and 

found two distinct classes – a group with survival probabilities around 70%, and another 

around 12%. This clustering was conducted through gene-expression profiling, by 

obtaining the gene-expression pattern of malignant and non-cancerous lymphocytes. 

Researchers then used the hierarchical clustering algorithm to split patients into two 

groups, such that one group’s expression patterns were more similar to non-cancerous 

samples, and the other’s were more similar to the malignant samples. In addition to 

separating the groups by survival probabilities, the clustering provided by the model was 

also able to help doctors identify proper therapeutic targets in patients, where earlier 

models were not able to provide useful information on this. In this way, machine learning 

was useful for finding relationships that were not previously apparent – an capability of 

machine learning that is key to this project.  
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Section 1.2 

Methods for Identifying Leading Indicators of Success and Failure 

 The central concept for this project is that of learning how to find the films 

throughout the careers of actors and actresses which best indicate future success or 

failure. At this point there is reason to believe that past success or failure strongly affects 

an individual’s future prospects; now it is necessary to find which films within one’s 

career establish or prevent future success. 

Section 1.2.1: Last Film and Whole Career 

 A straightforward approach to considering past careers is to simply average the 

popularity of every film that every actor and actress has done, and to find the correlation 

between that and his or her next film. A second approach is to only correlate every film in 

a given person’s career with its immediate predecessor. These have been done in my prior 

research at this lab. As we can see in Figure 1.2.1, for both actors and actresses, the last 

film alone yields stronger correlations than the whole career average. This suggests that 

the impact to one’s career of a single success or failure tends to diminish over time. This 

implies two possible mechanisms for film industry success. One possibility is that more 

recent films tend to be more influential, and that we can learn how to identify the films 

throughout an individual’s career which are likely to have the greatest impact on future 

success. Alternatively, we may find that the very last film, specifically, is the best 
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predictor of future success—in this case, film industry success would be a Markov 

process. 
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Figure 1.2.1 – Correlation Between Film Votes and 
Previous Film Votes



Section 1.2.2: Isolating Career Portions 

 The objective of finding leading indicators for future career success or failure can 

be carried out through machine learning, by finding specific portions of actors’ and 

actresses’ careers which have a tendency of being predictive. Consider films that are 

either positive or negative outliers, with respect to their popularity relative to that 

person’s career mean. For actors and actresses whose reputation among the general public 

contributes to the success or failure of their work, we may suspect that especially good 

and bad films would be better remembered than average ones. Therefore, films that are 

particularly good or bad may do more to affect the likelihood that people will see or 

avoid, respectively, their next release. It should also be considered that as films become 

increasingly old, their popularity may need to be increasingly far from the mean to be 

remembered. Thus, we can make a model that includes only films that are increasingly 

far from the mean, as a function of time.  

 For an example, consider Figure 1.2.2, for a hypothetical director who is presently 

active creating films. The blue areas in the figure correspond to “memorable” outliers that 

would be included in the model, and the white area corresponds to “forgettable” films 

that would be excluded. 
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 In addition to reflecting whether films are either memorable or forgettable, this 

model would also take into account the notion that more recent films are likely to better 

represent the current state of a person’s work than older films. For example, a director 

who recently made a series of unpopular movies might be expected to make more 

unpopular ones, but someone who released a series of unpopular films thirty years ago 

may have since increased his ability to attract people to the theaters (or perhaps further 

decreased it). However, an extremely good or extremely poor film from decades past 

might still be valuable to include in a predictive model.  

!10

Figure 1.2.2 – Hypothetical Career Slice Method



 The calculations required for this model can be easily be carried out 

algorithmically on a large data set. Furthermore, machine learning can be used to 

optimize the area in which films are included, allowing this to be a reasonable approach 

for this project.  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Section 1.2.3: Rhythms of Success 

 Another means for identifying leading indicators for success is to examine 

patterns of popular and unpopular movies throughout an individual’s career. For example, 

consider an A-list actor who likes to mix high-profile films with “passion projects” – 

small budget films, intended for a narrow audience, mainly done on the side for fun. If 

we can establish that this actor tends to follow up every high-budget blockbuster with one 

or two passion projects, we can assume that if his or her last film was extremely popular, 

the next one will likely not be.  

 These “rhythms of success” can endure for long throughout some careers. Other 

than passion projects, periods of predictable success and failure could result from those 

who tend to get burned out or uninspired, then have a period of productivity, in repeated 

cycles.  

 Identifying periods of popularity and unpopularity could be done on a large data 

set in a straightforward way. 

A Naïve Look 

 The identification of periodicity could be done in several ways. An intuitive but 

naïve way would be to simply compute the percentage change in popularity from every 
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movie in a person’s career to their next, then from every movie to the movie two later, 

then from every movie to the movie three later, and so on, and then comparing the 

average change for the one movie advancement against the average for two movie 

advancement, and for three movie advancement, etc.. For example, consider Ron 

Howard’s career as a director – Figure 1.2.3 shows the normalized IMDb popularity of 

each of his films. There is an apparent periodicity in this graph. We can then compare the 

average percentage change for one movie ahead, two ahead, and so on (Figure 1.2.4).  

We can see that the average percentage change is least when comparing every film with 

the film three movies ahead (the standard deviation of each average is lowest for three 

movies ahead as well). This would suggest that the best single reference for predicting the 

popularity of a given Ron Howard movie, would be the movie he directed three films 

ago.  
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Figure 1.2.3 – Popularity of Each Ron Howard Film



 

  

Using Autocorrelation 

 Although the above method provides an intuitive look at the basis for rhythms of 

success, a more rigorous mathematical approach would be to use autocorrelation. For an 

autocorrelation equation between times s and t, we can use:  

!14

Figure 1.2.4 – Ron Howard Career Periodicity



where Xi is the value of the series at time i, and E is the expected value. If R is well-

defined, it will return a value in the range of [-1, 1]. (Dunn) Thus we can apply the 

autocorrelation function for the series of movies in every individual’s career, and 

ascertain the strongest period length for each individual. 
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Section 1.3 

Survey of Machine Learning Approaches 

 In order to optimize the sets of most predictive movies, and find a general method 

for identifying predictive films in an individual’s career, we need an effective machine 

learning approach. This section discusses different machine learning approaches and 

algorithms, and their potential for use in this project.  

Genetic Learning 

 Fundamentally, any genetic learning algorithm requires two elements:  

• A representation of possible solutions in a format that can be easily modified and 

evolved. 

• A fitness function to evaluate a set of potential solutions, and decide which are 

most effective. 

 

 Both of these elements can be devised to fit this problem. For the set of possible 

solutions, we have the set of all of the reasonable values of the parameters to separate 

films to be included from those to be excluded. We consider the set of reasonable values 

to be the set of all possible values, excluding any ranges about which we are comfortable 

assuming beforehand that they will not yield any useful results. These parameters will 
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include relative popularity compared to the mean for that individual’s career, and age of 

the film. The fitness function will take the parameter values as an argument, find which 

movies to include from every career based on those parameters, then find the average 

popularity of those films, and finally correlate those averages for every given person with 

their next film. Higher correlations will always reflect a better result, so the algorithm 

will have a clear way to determine fitness.  

 

 The genetic algorithm aims to model genetic evolution. It begins with an initial 

naïve value for each parameter, such as 0, then creates a “population” of randomly 

mutated parameter values. Once it evaluates the fitness of each element in the population, 

the algorithm maintains a pre-set cohort of the strongest elements as the basis for the next 

“generation.” It continues creating new generations of values randomly mutated from the 

preserved cohort, with the results regularly improving, and stops either when a 

predetermined fitness level is reached, a pre-set amount of time has elapsed, or when a 

set maximum number of evolutionary generations has been produced.  

 

 Genetic learning fits this thesis very well. Its largest drawbacks – the requirements 

for easily evolvable parameters and an objective fitness function – are straightforward to 

develop in this project. Therefore this class of algorithm is well-suited to my thesis, and 

represents the core of my methodology.   
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Association Rule Learning  

 

 Association rule learning is a form of machine learning, based on the premise that 

in a sufficiently large database, combinations between items can be used for predictions. 

For example, in retail sales, an association rule algorithm might be used to analyze a 

database of every sale over a significant period of time. It could then find a rule, perhaps 

{pens, paper} -> {highlighters}, suggesting that many people who buy pens and paper 

tend to also buy highlighters in the same transaction. This would then suggest that the 

retail establishment might consider selling highlighters near their pens and paper, since 

this is a common combination.  

 An association rule algorithm analyzes a given database and finds rules, typically 

through two distinct steps: First, the algorithm finds all frequent sets of items in the 

database, by an exhaustive search through all possible item combinations. This makes 

such a search potentially infeasible in practice, because the set of potential sets of items is 

the power set over the entire set of items in the database; the power set has a size equal to 

2n-1, where n is the number of items in the database. However, this is mitigated by the 

downward closure property of support, which holds that when we have a frequent set of 

items, all of its subsets are also frequent; therefore, if we have an infrequent set of items, 

all of its supersets must also be infrequent. Due to this property, it may be possible to 

efficiently find all frequent sets of items.  
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 This form of data mining does have some relevance for this project, such as to 

determine if there are commonalities for movies that have specific combinations of 

popularity and unpopularity among their cast and crew. One salient example: do films 

with relatively unestablished directors and established actors perform better than films 

with established directors and unestablished actors? This question and others like it may 

help provide insight into the nature of human career success as pertains to the film 

industry. However, this class of machine learning was ruled out for this project, as 

association classification does not fit in closely enough with the scope of the question 

being investigated. 

Artificial Neural Networks  

 Artificial neural networks are computational models based on the general 

functionality of the neural mechanisms of the brain and central nervous system. These 

algorithms are capable of learning and pattern recognition, adapting to data as they 

progress through an analysis. This approach is useful for tasks that are difficult to 

approach using typical rule-based programming, such as handwriting recognition and 

computer vision.  

 Artificial neural networks are designed around a series of simple nodes – artificial 

“neurons” – which each perform a simple function on the input, and act in parallel, 
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similarly to a biological neural network. Furthermore, every node has an individual 

weight to balance its impact on the final output. These weights are adaptive and are tuned 

by a learning algorithm, thus allowing the algorithm to change and optimize itself as it 

processes data.  

 Due to the ability of the algorithm to optimize itself, it is well suited to situations 

in which a set of rules cannot be predetermined by researchers. Therefore, it could be a 

useful way to approach the problem in this project. However, optimizing with a neural 

network is a computationally intensive process—due to the time constraints of this 

project, this approach was ruled out. It may, however, be a valuable method for future 

research. 

Bayesian Networks  

 A Bayesian network functions through a probabilistic, directed graph model. This 

is based on a set of random variables that are weighted according to conditional 

dependencies from the initial directed graph, where the probabilistic model is a Bayesian 

probability function. For example, this could be used to solve the following problem: 

Given the probability of rain on a certain day, and given the probability that the sprinkler 

would be going on a rainy day, what is the probability that the grass is wet?  
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 With the nature of this kind of algorithm, it is well-suited to investigating the 

presence of hidden states in data, such as that of a Hidden Markov Model. While this 

approach could be relevant to developing an understanding of the mechanics of the film 

industry, it is not well-suited for the set optimization problem central to this specific 

project, so it was ruled out for my thesis. 

Support Vector Machine  

 Another powerful machine learning approach is that of a support vector machine. 

This method is useful if we have a set of data about which we know there is a hidden 

classification, but for which there is no simple way to determine the correct way of 

classifying individual items. For example, consider spam filtering: we know that every 

item is either spam or not spam; the objective is to classify individual messages 

accurately.  A support vector machine is a good way to approach these kinds of problems. 1

An SVM can take a training set, for which the classifications are already known, and use 

the various dimensions of the data to predict the classifications for the remaining items.  

As pertains to this project, the most appropriate use for an SVM would be to investigate 

“hidden” traits, such as through the application of a hidden Markov model. However, it 

would be impractically difficult to create a training set, such that the SVM could find 

 Spam filtering is, of course, an especially difficult problem, because the proper classification varies from 1

person to person. For one person, an promotional email from Amazon may be a useful way to learn about 
the week’s deals; someone else may consider it junk. 
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relevant traits. For this reason, using an SVM in this project was determined not be an 

optimal approach.  

Clustering  

 Clustering is a process which organizes a data set such that the items that are 

closest to one another – or are explicitly in the same group – are the most similar. It is 

common in tasks such as image analysis, bioinformatics and pattern recognition. 

Clustering can be carried out in different ways depending on the task to be done, so 

various algorithms and approaches exist. 

 A common approach is connectivity based clustering – also known as hierarchical 

clustering. In this, data points are organized such that the distance between points 

approximates their relative similarity; humans must then look at a plot and arbitrarily 

decide where one cluster ends and the next begins. Consider the following figure.   2

���

���  

Figure 1.3.1 – Sample Proximity Matrix for Connectivity-Based Clustering

 Image adapted from http://www.cs.umn.edu/~han/dmclass/cluster_survey_10_02_00.pdf., pp. 7, Figure 22
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 In this example, we have a set of four points: A clustering algorithm has 

determined the proximity of each point from every other point as a function of their 

respective original characteristics. For example, we can observe that the algorithm has 

determined that p1 and p4 are less similar than p1 and p2. The graph simply shows these 

proximities visually. In this type of graph, the absolute location of each point does not 

matter – the information lies in the distance between points. With more points we might 

have visible clusters; the proximity of any point to the “center” of a cluster reflects the 

degree to which that point exhibits the characteristics that, in the algorithm’s 

determination, most strongly define that cluster.  

  

 Unfortunately, this approach is not robust in the context of outliers, which will 

often either show up as more clusters or cause other clusters to merge together. For these 

reasons, in some circumstances hierarchical clustering is not reliable. However, this 

approach has valuable applications: for example, hierarchical clustering was used to 

predict lymphoma patient prognosis in Shipp, et al. 

 Another common approach to clustering is k-means clustering, which differs from 

hierarchical clustering in that it separates data into explicitly separate groups. However, 

the number of clusters, k, must be specified in advance; this is potentially a major 

drawback. (Cluster analysis) Another approach is distribution-based clustering, which 

defines clusters as being groups of objects which most likely all belong to the same 

statistical distribution. This method separates data points effectively, while allowing for 
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visually distinct but overlapping clusters. This method does not require a pre-determined 

number of clusters, and can be effective at capturing correlation and dependence between 

attributes.  

 While clustering would be useful in the context of general research in this area, it 

would not be optimal for this project. The best use for clustering would be for after we 

know which parts of a person’s career are the most predictive—we could then generate 

clusters based on the predictiveness of different combinations of movie traits (age, 

popularity, and so on). While this could be useful, clustering would not be appropriate for 

the optimization process itself – that is, ascertaining the predictiveness of the various 

factors – which is the central aspect of this thesis.   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Section 1.4 

Research Goals 

 The current state of the research suggests that correlations between each movie in 

a person’s career are strongest with that of the immediately previous film, rather than the 

sum of the popularity of every previous career film, or a randomly assigned movie from 

that person’s career. This result implies that film success may have Markovian properties 

– where the best way to predict the popularity of a person’s next film is simply to know 

the popularity of their last film, and to apply it to some prediction matrix which remains 

constant. In other words, it would imply that in Hollywood, everyone is “only as good as 

his or her last film.” The chief purpose of the research in this proposal, then, is to 

understand where the predictive information lies throughout a person’s career.  

 If the results of this research are such that predictions can be significantly 

improved by using prior career data, this would indicate that film success is not 

Markovian; furthermore, the specific films to include would suggest the ways by which 

success in the film industry is created and maintained. For example, the predictive 

importance of a single positive outlier from early in someone’s career, may provide 

insight into the degree of long-lasting popularity a person may enjoy from one major hit 

movie. 
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 Conversely, if earlier career data has a negligible impact on predictions compared 

with the last movie alone, this would suggest that film industry success may truly be a 

Markov process, and that a person’s last film is in fact the major determinant of their 

future popularity and success.  
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Chapter 2  

Data Sets, Software Design & Methodology 

 The software used in this project has two main components: the first aggregates 

film statistics from several databases and finds the correlations between the set of an 

individual’s earlier work and their next film; the second component is built around a 

machine learning framework and optimizes the set of films. This section will explore 

those components in detail. 

Section 2.1 

Data Sets 

 The movie data used in this project is derived from several databases, all stored in 

a comma-separated value (.csv) format: 

• films.csv [95217 rows, 5 columns]: A compilation of every American-made film, 

including movie ID, title, year of release, real number of votes, and normalized vote 

count. 

• wikipediaMovies.txt [4,009 rows, 4 columns]: A database of every American-made 

film released from 2008 to 2014 which has an entry on Wikipedia. This was useful for 
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filtering the overall number of films considered, which will be discussed later in this 

section. 

• relevantFilms.csv [35,232 rows, 9 columns]: A database of every role in every movie 

in wikipediaMovies.txt. Includes a reference to the next movie that the given person 

released, as well as type (actor or actress), normalized votes, person ID, and career 

average and size of a standard deviation up to the point of making that film. To 

improve computation time, this also includes references to where the person’s entire 

career data, up to that point, is located in AllVotes.csv.   

• allVotes.csv [419,943 rows, 7 columns]: A database of the career history of every actor 

and actress in wikipediaMovies.txt.  

• films_actor.csv [64,565 rows, 3 columns], films_actress.csv [35,030 rows, 3 columns]: 

A database of every actor and actress by name, person ID, and movie ID, for cross-

referencing purposes. 

 When the program is run, the data is loaded into memory, and duplicate or 

malformed entries are removed. Then all movies are cross-referenced with 

wikipediaMovies.txt, and any movies and cast not in the database—that is, not involved 

with movies with entries on Wikipedia, and released between 2008 and 2014—are 

removed. Note that this truncation only applies to the final group of movies the 

popularity of which we are trying to predict: when looking into the past career of every 

actor and actress in these movies, we will use the data for every film they were in, 

regardless of release year or Wikipedia entry. 
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 This removal is done for several reasons. First, extremely low-budget films may 

not represent the behavior of the mainstream film industry, and exist in large enough 

numbers to risk a significant distortion of the results; by restricting our results to only 

films with Wikipedia entries, we limit our consideration to only mass-market and 

mainstream “indie” films. Second, the project is focused on understanding the film 

industry as it is today, so careers that ended several decades past may not represent 

current film industry behavior. Finally, there is a particular anomaly that we need to 

avoid: consider an actor who is active long before becoming famous, but upon reaching 

“stardom,” his fans start to watch his earlier work, and rate those films more on IMDb. In 

this way the popularity of his earlier films is influenced by that of his later work, an 

anomaly which would heavily distort this analysis. We can significantly minimize this by 

restricting our consideration to only a slice of recently released films.  

 In relevantFilms, we have a row representing film popularity, as well as a row for 

a reference to the film that was released next in that person’s career. By default, for each 

actor, the software finds the Pearson correlation between the popularity of every given 

film and that of the film that is listed to have been released next. When we want to find 

the correlations using the whole career average, instead of that person’s immediately 

prior film, we simply replace the last film popularity in relevantFilms with an average of 

every film from the beginning of that person’s career up to the film in question. It is easy 

to find this set to average, because relevantFilms includes a reference to where, in 
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allVotes, we may find the person’s entire career history up to the point of that film. We 

can then find the average of the values in that set and find the correlation with next film 

popularity.  

 In order to reduce computation time, I used the snowfall package in R, which 

enables parallel processing. I implemented it to use parallel processing for the task of 

finding the films in each career which fit the given parameters, and allowed the machine 

learning framework to divide up its work in parallel as well. On my computer, which has 

8 addressable cores, this reduced computation time by roughly an order of magnitude. 
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Section 2.2 

Finding Correlations 

 The next objective is to create a function which can consider just portions of a 

person’s career, to correlate the average popularity of only included films with that of the 

individual’s next film. Recall the visualization in Figure 1.2.1. The chief concern for 

optimization is that of balancing granularity with computation time. On my personal 

computer, evaluating the correlation results for any individual set of career slice 

parameters takes about 5 seconds per run. We then have the objective of achieving a 

rigorous result while minimizing the necessary number of runs. For example, suppose we 

were to just focus on high granularity. Consider a basic brute force approach: we could 

remove the dividing lines in Figure 1.2.1 and simply divide the graph into 100 sections, 

where each section is either included or excluded. For every possible combination of 

included and excluded sections, we could find the average popularity of all of the films in 

the included sections. With this, we could then find which combination gives us the 

highest correlation, and thus have the best possible “map” for inclusion and exclusion. 

This would yield a very clear result. However, if we consider that every section can either 

be included or excluded, that gives us 2100 possible combinations, each of which must be 

evaluated. At 5 seconds per run, this would take about 2.0•1023 years before achieving a 

result.  
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 Clearly, then, computation time is an important consideration. However, the 

example given in Figure 1.2.2 is perhaps too simple, as it only focuses on outliers. There 

is also the possibility that the most predictive films would tend to be the ones that stay 

closer to the center of the graph, closer to the career average.  To address this, I applied 3

some modifications to the basic concept from Figure 1.2.2.   

 Similarly to Figure 1.2.2, we have the year of film release on the horizontal axis, 

and relative popularity on the vertical axis. Every dot represents a single film, and the 

plot as a whole reflects one individual’s career. For the optimization, we simply have two 

independent lines, Line Y and Line Z. For any year on the plot where Line Y is greater 

than Line Z, the only movies to be included are those that fall between both lines. For any 

year where Line Y is less than Line Z, the only movies to be included are those that are 

 This could occur if people disregard memories of especially good or bad movies, such that they assume 3

that an unusual performance may not be representative of that person’s usual output.
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above Line Z or below Line Y. Finally, if Line Y ≈ Line Z, no films will be included, 

other than the most recent film. 

 The machine learning algorithm will move these lines, in order to optimize the set 

of included movies. This approach gives the algorithm the flexibility to either include just 

outliers, just movies near the mean, or (as in Figure 2.2.1) some combination of both. 

This has the benefit of requiring the algorithm to optimize few variables. Since Line Y 

and Line Z are simple lines, the algorithm just needs to optimize a slope and intercept for 

each; representing just four variables. This will keep the computation time to a minimum 

while allowing a good deal of flexibility for the algorithm. 

 In the current setup, every optimized set of movies contains that person’s last 

movie—if the set would otherwise be empty (if Y ~ Z), then that would be the only 

movie used for correlations; otherwise, it would be kept alongside the movies in the 

included areas.  However, using the autocorrelation method described in Section 1.2.3, I 4

found the optimal period length for every career. As the machine learning algorithm 

optimizes the career slices, it will also be checking to see whether the last movie should 

be replaced with the movie one period length before the next movie (the movie with 

which we are finding a correlation). Furthermore, some preliminary testing has shown 

that correlations may be stronger using the movie several period lengths back, so the 

algorithm will be given the freedom to test the correlations for any arbitrary number of 

 It would be removed, however, if the same movie is also in an included area, to keep from counting that 4

movie twice.
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period lengths back, and find which provides the overall strongest result. This will be 

reflected in a new argument in actor and actress for number of period lengths to look 

back. 

 In the final code, the entire selection and optimization portion was written as a 

single function, actor(a, b, c, d, P) and actress(w, x, y, z, p). Prior research at my lab 

suggests that actors’ and actresses’ careers evolve differently, so it was prudent to 

optimize separately. For actors, a and b are the slope and intercept, respectively, of Line 

Y; c and d for Line Z. For actresses, w, x, y, z serve the same respective roles. P and p 

represent the number of period lengths to look back, where a value of 0 would instruct 

the algorithm to just use the Last Movie. Therefore we have a simple function to find the 

correlation results given any possible parameters. This function was then used as the 

fitness function for the machine learning algorithm. 
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Section 2.3 

Machine Learning 

 After a considerable review of possible machine learning approaches (Section 

1.3), I decided to do the optimization using a genetic learning algorithm. Recall that there 

are two necessary components of any genetic learning (GL) approach: 

• A representation of possible solutions in a format that can be easily modified and 

evolved. 

• A fitness function to evaluate a set of potential solutions, and objectively decide 

which are most effective. 

It was apparent that my project would work well with this approach. The parameters in 

actor(a, b, c, d) and actress(w, x, y, z) can be easily modified in small, incremental steps, 

and are therefore well-suited for an evolutionary approach. Secondly, the results of actor 

and actress from each attempted set of parameters provide an effective fitness function 

for objectively evaluating each attempt. 

 The programming for this project was done entirely in R, and so finding an 

effective GL framework in R was a necessity. I decided to use a package called rgp, 

because it provides a good deal of flexibility and is well-documented. The following is an 

overview of how I chose to configure rgp, with explanations of each option and a brief 

justification. 
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  geneticProgramming vs. multiNicheGeneticProgramming 

  

 The default option in this choice is geneticProgramming, in which which rgp will 

approach optimizations in the way as previously described: a set of possible parameters is 

randomly generated, then each possibility is evaluated, where the best one is stored for 

the next generation. In the next generation, random variations are made against the best 

of the earlier parameters, and a new set to evaluate is generated. After a sufficient number 

of generations, a highly evolved solution is returned. 

 multiNicheGeneticProgramming works in much the same way, except that 

separate, isolated groups are allowed to evolve concurrently. After a sufficient number of 

generations, we may have several effective but highly different solutions. Conversely, if 

the same solution is eventually found in each niche, this provides more confidence that 

that solution may be the only viable approach. 

 I chose multiNicheGeneticProgramming—if several vastly different but equally 

effective results are discovered, that can provide valuable information about the nature of 

film industry success. 

stopCondition 
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 Genetic programming typically provides several different options for 

stopCondition—the point at which the algorithm stop running and returns a result. 

Consider that, like the biological evolution process upon which it is modeled, the genetic 

learning process can continue indefinitely: there is no point when it is simply “done.” 

Therefore, we must decide beforehand the point at which we will be satisfied.  

 The most straightforward stop condition is time: we can simply specify the 

number of seconds before finishing the algorithm and getting the results. Another option 

is number of evolutionary steps – the algorithm will stop after a set number of 

generations. Finally, we can have the algorithm run indefinitely until it reaches a pre-set 

fitness level, which in this case would be a certain correlation value. 

 Because time is a pertinent consideration in the context of a thesis project, I chose 

to set time as the stop condition. I ran separate evaluations for actor and actress, and in 

each case specified 172,000 seconds (about two days) for each run.   

  

numberOfNiches 

 If using multiNicheGeneticProgramming, we can pre-set the number of niches in 

which to concurrently run the genetic evolution. For this project, I chose 8 niches, to 

match the number of addressable CPU cores on my computer. 
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populationSize 

 Specifies the number of individuals in each population – that is, the size of each 

genetic evolution generation. For this, I chose [final number]. 
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Chapter 3  

Results 

 The findings presented below are the product of the rgp implementation and data 

sets described in Chapter 2, following 125 hours of computation, encompassing 

approximately 5,000 evolutionary steps, and 200,000 fitness evaluations.  

 The expectation at the start of this project was that actors and actresses may 

exhibit very different career patterns—this held true in the final results. 

Section 3.1 

Actors 

 Recall from Section 2.2 that we optimized using two lines, Line Y and Line Z: in 

any year where Y > Z, the area of included films for correlation is between the two lines; 

where Z > Y, the included areas are those above Z and below Y; where Y ~ Z, there is no 

included area. 

 For actors, we have the following result, which we will refer to as Actor Result. 

For these equations, x equals film age: 
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Actor Result: 

Y  =  34.398x  –  34.291 

Z  =  14.059x  –  6.88 

 We have two plots of this result. In Figure 3.1.1, we have a typical range for both 

axes, in order to give a visual sense of how small the included area is. Because the 

relevant area is very small, we then have Figure 3.1.2, in which we see the plot zoomed 

in for greater detail, with the areas for included films highlighted.  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Figure 3.1.1 - Actor Result



 

 We can see by inspection that the area of inclusion is very small, confined to only 

some movies less than 1.5 years old. We see in Figure 3.1.3 that the relative improvement 

over Last Movie correlation is extremely negligible. 
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 Actor Result provides a nominally better correlation than Last Movie; this is why 

it was found and returned. However, the improvement is small enough as to be incidental. 

The result is that the machine learning algorithm could not find a significant 

improvement to Last Movie through career slices. From this, we find that broad portions 

of an actor’s career have little influence on his overall success or failure, with the very 

last film having as much predictive power as any career slice. 

 Recall from Section 2.2 that every set of included films includes the Last Movie, 

but that the algorithm has the freedom to replace that film with the one that was released 

one or more period lengths back. Note that in Figure 3.1.3, Actor Result reflects the 

correlations using the last movie. Here were see the results of looking back one or more 

period lengths. 

 With actors, we find that using looking back one or more period lengths, rather 

than including the last film, gives us a small improvement. The algorithm found that the 

optimal result is found when looking back 19 period lengths.  We have relative 5

correlations in Figure 3.1.4, in which we see that the improvement from looking back 

using optimal period lengths is very small. Therefore we find that for actors, the very last 

film has virtually all of the predictive power of any other set of data.  

 This sounds large, but the median period length for actors is 2 movies, so for at least half of all actors this 5

would entail looking back either 19 or 38 movies. Because many actors release several movies per year, in 
many cases the pivotal movie would be made in the past decade or so.
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Section 3.2 

Actresses 

 For actresses, the career progression is very different from that of actors. We have 

the following equations for Actress Result.  Figure 3.2.1 is a plot of Line Y and Z, with 

the areas for included films. 

Actress Result 

Y = 0x + 0 

Z = 2.12x + 0 
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Figure 3.2.1 – Actress Result



 Here we clearly see the relative influence of negative and positive impressions. 

Above-average films only provide strong predictive information if they are within a year 

or two old, with movies less than one standard deviation above the mean barely having 

any impact. However, poorly received movies contain strong predictive information 

regardless of their age or deviation from the mean. 

 We can see in Figure 3.2.2 the correlations from Last Movie, Whole Career, and 

Actress Result. For comparison, I have also included the correlation result of only above-

average films. We can clearly see the power of negative impressions. 

 Next, we consider rhythms of success. For actresses, the best results were 

obtained when we correlated each movie with the movie two period lengths back. As we 

can see in Figure 3.2.3, when we correlate each movie with only the film two period 

lengths back, we have a correlation roughly equal to that of Actress Result. Therefore, we 

find that the same predictive information generally exists in the single movie two period 

lengths back, as in the entirety of the movies included in Actress Result. Furthermore, 

when we correlate each movie with the set of the included films in Actress Result, but 

replace Last Film with the movie from two period lengths back, we get somewhat 

stronger results. 
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Chapter 4  

Discussion 

Section 4.1 

Pivotal Career Moments for Actors and Actresses 

 In Chapter 3 we see that for actors, the very last movie provides correlations 

nearly as strong as any attempt to use earlier career history. This may provide the 

impression that for actors in Hollywood, “you’re only as good as your last movie”—

suggesting that an actor’s most recent film will alone determine whether his career rises 

or falls.  However, a closer examination rules this out, because certain earlier work can 

provide equally strong correlations as that of the last film. If it were true that an actor’s 

success or failure is determined by his last film, then that last film should provide far 

better predictions than any other releases, because the last film would have the power to 

alter an actor’s career trajectory. This is not the case. Instead, the last film should be seen 

as a reflection of a process that has already happened, based on a small number of pivotal 

successes or failures earlier in the actor’s career. In this way, although the last film 

provides a strong predictive information for actors, it is unlikely to have the power to 

change the state that it is reporting. 
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  Because actors’ success is most strongly associated with a very small number of 

films, these films should be seen as the pivotal events in an actor’s career trajectory. For 

actresses, there is less emphasis on pivotal “make-or-break” career moments, as success 

is based on broad trends and career history. From this, we can also conclude that an 

actress is not “only as good as her last movie.”    

Section 4.2 

Negative and Positive Impressions 

 We see in Figure 3.2.1 that for actresses, well-received movies provide strong 

predictive information for future success for only a short period of time—although as one 

might expect, the longevity of this impact is directly correlated with how far the film is 

are above that person’s career average. In contrast, poorly received movies have much 

greater longevity—this impact persists for the duration of an actress’s career, regardless 

of how far below average the film falls. This affirms the findings in Hennig-Thurau 

(2014) and Baumeister (2001), that negative impressions have a far more powerful and 

long-lasting impact on decision-making than that of positive impressions. 

 Notably, we do not see the same pattern for actors, but because of the inability for 

any career portions, positive or negative, to improve predictions over the very last film. 

From this we can broadly conclude that moviegoers remember very few movies in an 

actor’s past work, whether positive or negative, so that the ones they do recall become 
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very influential. With actresses, viewers largely forget their positive roles, but are very 

likely to remember disappointments for long stretches of time, and then act according to 

those long-held impressions when an actress’s new movie is released. 

 This represents a significant difference in career development based on gender, 

and we might consider it valuable to explore its root social causes. This is, of course, well 

outside of the purview of this project, but could make for a meaningful investigation in 

sociology or anthropology. 

 Section 4.3 

Markov Process for Career Success 

 A question formulated at the beginning of this project is whether film industry 

success could be a Markov process. This would be if success is a “memoryless” process, 

such that we can make the most accurate predictions for future success based only on the 

success of a person’s most recent film. 

 We can see that for actresses, success is definitively not a Markov process. This is 

evident from the results in Figures 3.2.3 and 3.2.4, where we can see that the Actress 

Result optimization and the rhythms of success method both provide notably better 

correlations with future success than that of last film alone—ruling out the possibility that 

actress success is a memoryless process. 
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   For actors, the status as a Markov process is less clear. We know that the last 

film alone provides correlations that are extremely close to that of the Actor Result 

optimization and the rhythms of success method. The minor improvement by the latter 

two methods has little practical benefit, and may be the result of a coincidental 

arrangement of the data that resulted in a trivially improved correlation. However, we 

recognize that this could alternatively be an indication that some of an actor’s earlier 

work does have predictive information not contained in the last film; even if this only 

improves predictions by a slight degree, it would still make actor success decidedly not a 

Markov process. It is for this reason that while these results raise the prospect that actor 

success is Markovian, they do not conclusively indicate it as such.   

Section 4.4 

General Observations 

 From these results, we find that an actress looking to build a successful career in 

the film industry would be well-advised to exercise considerable discipline, in 

minimizing the number and magnitude of her poorly-received films. This suggests a 

process that would discourage risk-taking, as failures are remembered long after most 

successes are forgotten. A positive aspect of this is that for an established actress, with a 

history of many well-liked movies and few poorly-received ones, her career will be 
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unlikely to be harmed from a small number of bad films—viewers would tend to 

remember her overall career trends and not just a few projects. 

 Actors face a different situation. As we’ve found, actors’ career trajectories are the 

result of a small number of long-remembered films. This encourages risk-taking, relative 

to that of actresses’ careers. Most failures will be forgotten (along with most successes), 

so actors face a smaller downside in taking on a risky project that could be a hit. The 

negative aspect is that even a successful actor could have his career damaged or ruined by 

a small number of poorly-received films, if those become his “make-or-break films,” 

because people will tend to disregard most of his other output. 

   While these results show distinct, broad trends, we expect that some individual 

actors and actresses will have careers that are less reflective of these results. We may 

consider the career trajectory of Parker Posey, whose fame is not derived from a small 

number of key films, but rather from significant roles in many small productions. A 

character actor, like Steve Buscemi, may have built his success more on his unique acting 

style than on a few notable roles. Finally, because films derive their success from various 

factors outside of cast and crew, many individual films will succeed or fail on merits 

outside of its associated actors.        
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   These results, then, show distinct trends on a large scale: while some careers and 

films will not reflect these decision-making patterns, many will. For this reason, future 

research should focus on developing a greater understanding of how films become make-

or-break in an individual’s career. We would also benefit from an understanding of the 

means by which poorly-received pivotal films could be replaced in the public 

consciousness by well-liked ones. In this way actors could mitigate the impact of risky 

films to their careers, and even alter their career trajectory after the fact.  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