Appendix Writing in a Report

Appendix 1 – Figures and Tables

List of Figures and Tables

Figure 1 Timing of Work Packages and their components	3
Figure 2: Overview of discrete event simulation process	4
Figure 3: Design file of test artefact (left). Actual manufactured test artefact (right)	4
Figure 4: Surface finish, pins, thin walls and holes assessed	5
Figure 5: Topology Optimisation Process-flow (Credit: TWI)	5
Figure 6: GE engine bracket (Credit:TWI)	6
Figure 7: ManSYS Manufacturing quality validation process	6
Figure 8: Example of the ManSYS decision making tool analysis	6
Figure 9: ManSYS web portal interface	7
Figure 10: ManSYS Production Requests	7
Table 1 list of participants	8
Table 2: Overview of Demonstrator Results Achieved from ManSYS for each of the Demonstrators	8

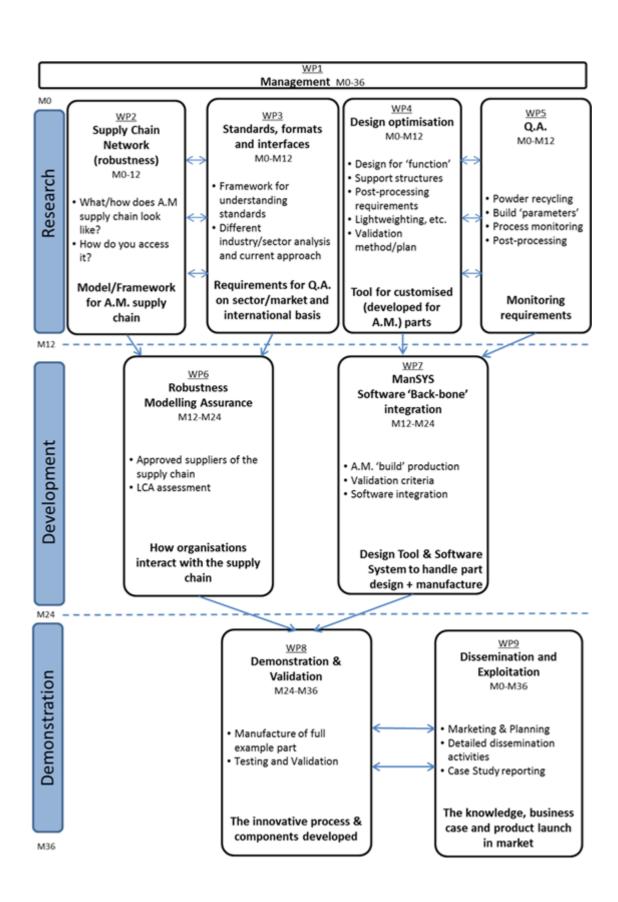


Figure 1 Timing of Work Packages and their components

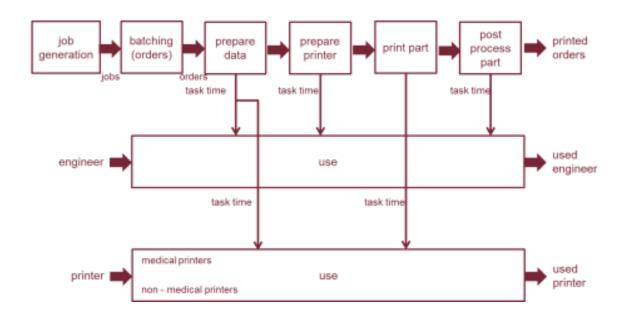


Figure 2: Overview of discrete event simulation process.

Figure 3: Design file of test artefact (left). Actual manufactured test artefact (right).

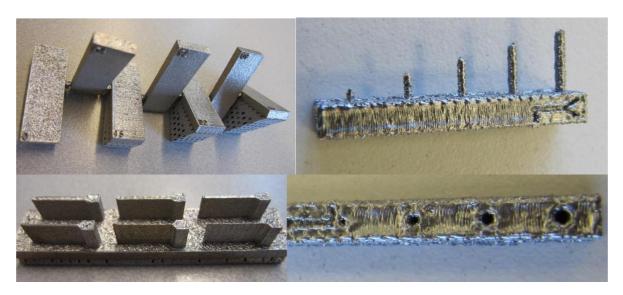


Figure 4: Surface finish, pins, thin walls and holes assessed.

Original part Optimisation • Definition of Definition and geometry (CAD) refinement of

- Definition of load cases and constraints
- Part requirements (fatigue, material behaviour and strength)
- Analysis of original component

Topology

- optimisation parameters: number of iterations, member size constraints, etc.
- Assessment of results and mesh sensitivity study

Part "Re-design"

- Based on original part and STL from topology optimisation
- Use Materialise 3-Matic software
- Regularise, smooth, and replace unwanted aspects
- Re-mesh the surface and add substructures

Final Verification

- Re-mesh the new part
- Analyse under design loads
- Verify adequacy of solution

Figure 5: Topology Optimisation Process-flow (Credit: TWI)

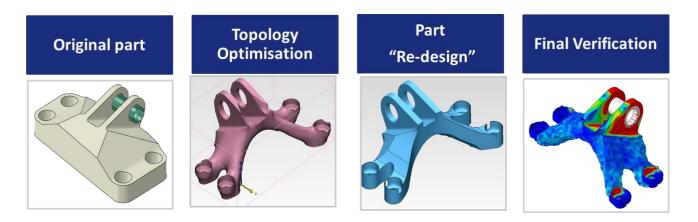


Figure 6: GE engine bracket (Credit:TWI).

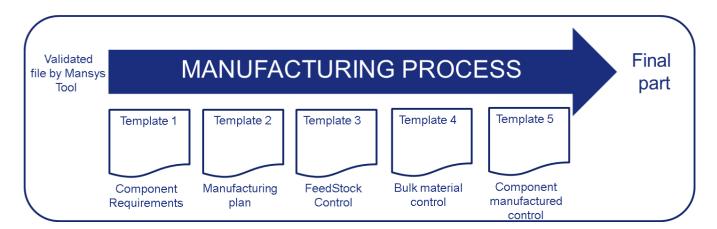


Figure 7: ManSYS Manufacturing quality validation process.

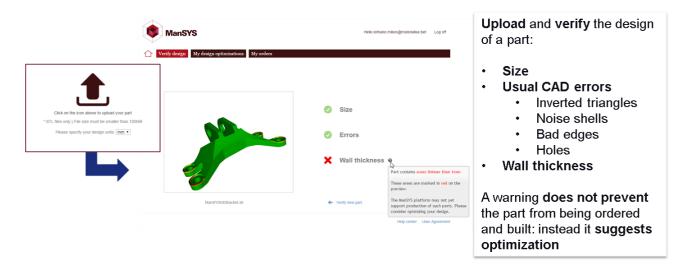



Figure 8: Example of the ManSYS decision making tool analysis.

Figure 9: ManSYS web portal interface.

Figure 10: ManSYS Production Requests.

Table 1 list of participants

Participant no.	Participant organisation name	Participant short name	Country		Organisation Type
1	TWI Ltd	TWI	UK		RTO
2	Materialise	MAT	Belgium (USA)		LE
3	LPW Technologies Ltd	LPW	UK		SME
4	BCT GmbH	BCT	Germany		SME
5	Polyshape	POL	France		SME
6	Berenschot	BER	Netherlands		LE
7	TNO	TNO	Netherlands		RTO
8	AIMME	AIM	Spain	.0	RTO
9	Smith & Nephew	SN	UK (USA)		LE
10	Wisildent (& Twocare)	WIS	Italy		SME
11	GE	GE	Turkey (USA)	C*	LE

Table 2: Overview of Demonstrator Results Achieved from ManSYS for each of the Demonstrators.

	GE	S&N	Wisildent
Optimization Tool Analysis		75% weight reduction	
Supply Chain Analysis	86% improvement	in total purchase ordering	g and delivery period
Decision Making Tool Analysis	Auto	utomated thin wall detect omated size limitation det art error detection for inv	ection
Life Cycle Analysis	8.3kWh of specific energy consumption for the optimized bracket	4kWh of specific energy consumption for the optimized nail	0.4kWh of specific energy consumption for the optimized bridge
Business Impact	75% weight reduction from one bracket,	90% reduction in manufacturing time	75% reduction in manufacturing time

	equating to \$1,254,000 cost	and 68% less raw material, equating to	
	savings per year.	1,060.000€ cost savings annually.	
Environmental impact (material)	0.003% reduction in fuel consumption per bracket.	240gr less raw material per nail	75% shorter manufacturing time